A graph-based model of object recognition self-learning
نویسندگان
چکیده
منابع مشابه
a computational visual neuroscience model for object recognition
in this study with the inspirations from both neuroscience and computer science, a combinatorial framework for object recognition was proposed having benefited from the advantages of both biologically-inspired hmax_s architecture model for feature extraction and extreme learning machine (elm) as a classifier. hmax model is a feed-forward hierarchical structure resembling the ventral pathway in ...
متن کاملLearning indexing functions for 3-D model-based object recognition
Geometric indexing is an efficient method of recovering match hypotheses in modelbased object recognition. Unlike other methods, which search for viewpointinvariant shape descriptors to use as indices, we use a learning method to model the smooth variation in appearance of local feature sets (LFS). Indexing from LFS effectively deals with the problems of occlusion and missing features. The func...
متن کاملa tripartite model of efl teachers attributions, burnout, and self-regulation: towards the prospects of effective teaching
همطالعه حاضر به ارائه مدلی برای آموزش موثر زبان انگلیسی می پردازد. مدل حاضر از سه عامل تاثیر گذار در کارایی تدریس معلمان زبان انگلیسی بهره می برد. این سه عامل شامل سبکهای اسنادی، خود تنطیمی و فرسودگی شغلی معلمان ایرانی زبان انگلیسی می باشد. رساله مورد نظر درچهار فاز طراحی شده است: فاز اول شامل طراحی و رواسازی پرسشنامه سبکهای اسنادی معلمان زبان انگلیسی و فاز دوم شامل استفاده از این پرسشنا...
Machine Learning Issues in Model Based Object Recognition
For decades machine learning and computer vision evolved separately largely ignorant of each other Only recently the need for automating some costly tasks in vision intensi ed to the point that many specialists in the eld asked whether machine learning algorithms can be of help With a focus on model based object recognition the task of this paper is to survey intersecting items in the two disci...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Studies in Theoretical Physics
سال: 2013
ISSN: 1314-7609
DOI: 10.12988/astp.2013.13008